\(\int \frac {1}{\sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))^2} \, dx\) [241]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 28, antiderivative size = 116 \[ \int \frac {1}{\sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))^2} \, dx=\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^2 d \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}+\frac {2 e \sin (c+d x)}{9 a^2 d (e \sec (c+d x))^{3/2}}+\frac {4 i e^2}{9 d (e \sec (c+d x))^{5/2} \left (a^2+i a^2 \tan (c+d x)\right )} \]

[Out]

2/9*e*sin(d*x+c)/a^2/d/(e*sec(d*x+c))^(3/2)+2/3*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(
1/2*d*x+1/2*c),2^(1/2))/a^2/d/cos(d*x+c)^(1/2)/(e*sec(d*x+c))^(1/2)+4/9*I*e^2/d/(e*sec(d*x+c))^(5/2)/(a^2+I*a^
2*tan(d*x+c))

Rubi [A] (verified)

Time = 0.11 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3581, 3854, 3856, 2719} \[ \int \frac {1}{\sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))^2} \, dx=\frac {4 i e^2}{9 d \left (a^2+i a^2 \tan (c+d x)\right ) (e \sec (c+d x))^{5/2}}+\frac {2 e \sin (c+d x)}{9 a^2 d (e \sec (c+d x))^{3/2}}+\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^2 d \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}} \]

[In]

Int[1/(Sqrt[e*Sec[c + d*x]]*(a + I*a*Tan[c + d*x])^2),x]

[Out]

(2*EllipticE[(c + d*x)/2, 2])/(3*a^2*d*Sqrt[Cos[c + d*x]]*Sqrt[e*Sec[c + d*x]]) + (2*e*Sin[c + d*x])/(9*a^2*d*
(e*Sec[c + d*x])^(3/2)) + (((4*I)/9)*e^2)/(d*(e*Sec[c + d*x])^(5/2)*(a^2 + I*a^2*Tan[c + d*x]))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 3581

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[2*d^2*
(d*Sec[e + f*x])^(m - 2)*((a + b*Tan[e + f*x])^(n + 1)/(b*f*(m + 2*n))), x] - Dist[d^2*((m - 2)/(b^2*(m + 2*n)
)), Int[(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, d, e, f, m}, x] && EqQ[a
^2 + b^2, 0] && LtQ[n, -1] && ((ILtQ[n/2, 0] && IGtQ[m - 1/2, 0]) || EqQ[n, -2] || IGtQ[m + n, 0] || (Integers
Q[n, m + 1/2] && GtQ[2*m + n + 1, 0])) && IntegerQ[2*m]

Rule 3854

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Csc[c + d*x])^(n + 1)/(b*d*n)), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rubi steps \begin{align*} \text {integral}& = \frac {4 i e^2}{9 d (e \sec (c+d x))^{5/2} \left (a^2+i a^2 \tan (c+d x)\right )}+\frac {\left (5 e^2\right ) \int \frac {1}{(e \sec (c+d x))^{5/2}} \, dx}{9 a^2} \\ & = \frac {2 e \sin (c+d x)}{9 a^2 d (e \sec (c+d x))^{3/2}}+\frac {4 i e^2}{9 d (e \sec (c+d x))^{5/2} \left (a^2+i a^2 \tan (c+d x)\right )}+\frac {\int \frac {1}{\sqrt {e \sec (c+d x)}} \, dx}{3 a^2} \\ & = \frac {2 e \sin (c+d x)}{9 a^2 d (e \sec (c+d x))^{3/2}}+\frac {4 i e^2}{9 d (e \sec (c+d x))^{5/2} \left (a^2+i a^2 \tan (c+d x)\right )}+\frac {\int \sqrt {\cos (c+d x)} \, dx}{3 a^2 \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}} \\ & = \frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^2 d \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}+\frac {2 e \sin (c+d x)}{9 a^2 d (e \sec (c+d x))^{3/2}}+\frac {4 i e^2}{9 d (e \sec (c+d x))^{5/2} \left (a^2+i a^2 \tan (c+d x)\right )} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 2.39 (sec) , antiderivative size = 123, normalized size of antiderivative = 1.06 \[ \int \frac {1}{\sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))^2} \, dx=\frac {\left (-\frac {8 e^{4 i (c+d x)} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )}{\sqrt {1+e^{2 i (c+d x)}}}+2 (2+8 \cos (2 (c+d x))+7 i \sin (2 (c+d x)))\right ) (i \cos (2 (c+d x))+\sin (2 (c+d x)))}{18 a^2 d \sqrt {e \sec (c+d x)}} \]

[In]

Integrate[1/(Sqrt[e*Sec[c + d*x]]*(a + I*a*Tan[c + d*x])^2),x]

[Out]

(((-8*E^((4*I)*(c + d*x))*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))])/Sqrt[1 + E^((2*I)*(c + d*x))
] + 2*(2 + 8*Cos[2*(c + d*x)] + (7*I)*Sin[2*(c + d*x)]))*(I*Cos[2*(c + d*x)] + Sin[2*(c + d*x)]))/(18*a^2*d*Sq
rt[e*Sec[c + d*x]])

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 473 vs. \(2 (126 ) = 252\).

Time = 8.48 (sec) , antiderivative size = 474, normalized size of antiderivative = 4.09

method result size
default \(-\frac {2 i \left (2 i \sin \left (d x +c \right ) \left (\cos ^{4}\left (d x +c \right )\right )+2 i \left (\cos ^{3}\left (d x +c \right )\right ) \sin \left (d x +c \right )-2 \left (\cos ^{5}\left (d x +c \right )\right )+i \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )-2 \left (\cos ^{4}\left (d x +c \right )\right )-3 \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, F\left (i \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )+3 \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, E\left (i \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )+i \cos \left (d x +c \right ) \sin \left (d x +c \right )-6 F\left (i \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+6 \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, E\left (i \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}+3 i \sin \left (d x +c \right )-3 \sec \left (d x +c \right ) F\left (i \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+3 \sec \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, E\left (i \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\right )}{9 a^{2} d \left (\cos \left (d x +c \right )+1\right ) \sqrt {e \sec \left (d x +c \right )}}\) \(474\)

[In]

int(1/(e*sec(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

-2/9*I/a^2/d/(cos(d*x+c)+1)/(e*sec(d*x+c))^(1/2)*(2*I*sin(d*x+c)*cos(d*x+c)^4+2*I*cos(d*x+c)^3*sin(d*x+c)-2*co
s(d*x+c)^5+I*cos(d*x+c)^2*sin(d*x+c)-2*cos(d*x+c)^4-3*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(-csc(d*x+
c)+cot(d*x+c)),I)*(1/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)+3*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(I*(-csc(d*
x+c)+cot(d*x+c)),I)*(1/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)+I*sin(d*x+c)*cos(d*x+c)-6*EllipticF(I*(-csc(d*x+c)+cot
(d*x+c)),I)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+6*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*Ell
ipticE(I*(-csc(d*x+c)+cot(d*x+c)),I)*(1/(cos(d*x+c)+1))^(1/2)+3*I*sin(d*x+c)-3*sec(d*x+c)*EllipticF(I*(-csc(d*
x+c)+cot(d*x+c)),I)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+3*sec(d*x+c)*(cos(d*x+c)/(cos(d
*x+c)+1))^(1/2)*EllipticE(I*(-csc(d*x+c)+cot(d*x+c)),I)*(1/(cos(d*x+c)+1))^(1/2))

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.08 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.02 \[ \int \frac {1}{\sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))^2} \, dx=\frac {{\left (\sqrt {2} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (15 i \, e^{\left (6 i \, d x + 6 i \, c\right )} + 19 i \, e^{\left (4 i \, d x + 4 i \, c\right )} + 5 i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i\right )} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )} + 24 i \, \sqrt {2} \sqrt {e} e^{\left (5 i \, d x + 5 i \, c\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, e^{\left (i \, d x + i \, c\right )}\right )\right )\right )} e^{\left (-5 i \, d x - 5 i \, c\right )}}{36 \, a^{2} d e} \]

[In]

integrate(1/(e*sec(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^2,x, algorithm="fricas")

[Out]

1/36*(sqrt(2)*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*(15*I*e^(6*I*d*x + 6*I*c) + 19*I*e^(4*I*d*x + 4*I*c) + 5*I*e^(
2*I*d*x + 2*I*c) + I)*e^(1/2*I*d*x + 1/2*I*c) + 24*I*sqrt(2)*sqrt(e)*e^(5*I*d*x + 5*I*c)*weierstrassZeta(-4, 0
, weierstrassPInverse(-4, 0, e^(I*d*x + I*c))))*e^(-5*I*d*x - 5*I*c)/(a^2*d*e)

Sympy [F]

\[ \int \frac {1}{\sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))^2} \, dx=- \frac {\int \frac {1}{\sqrt {e \sec {\left (c + d x \right )}} \tan ^{2}{\left (c + d x \right )} - 2 i \sqrt {e \sec {\left (c + d x \right )}} \tan {\left (c + d x \right )} - \sqrt {e \sec {\left (c + d x \right )}}}\, dx}{a^{2}} \]

[In]

integrate(1/(e*sec(d*x+c))**(1/2)/(a+I*a*tan(d*x+c))**2,x)

[Out]

-Integral(1/(sqrt(e*sec(c + d*x))*tan(c + d*x)**2 - 2*I*sqrt(e*sec(c + d*x))*tan(c + d*x) - sqrt(e*sec(c + d*x
))), x)/a**2

Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{\sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))^2} \, dx=\text {Exception raised: RuntimeError} \]

[In]

integrate(1/(e*sec(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is undefined.

Giac [F]

\[ \int \frac {1}{\sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))^2} \, dx=\int { \frac {1}{\sqrt {e \sec \left (d x + c\right )} {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate(1/(e*sec(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(1/(sqrt(e*sec(d*x + c))*(I*a*tan(d*x + c) + a)^2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))^2} \, dx=\int \frac {1}{\sqrt {\frac {e}{\cos \left (c+d\,x\right )}}\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^2} \,d x \]

[In]

int(1/((e/cos(c + d*x))^(1/2)*(a + a*tan(c + d*x)*1i)^2),x)

[Out]

int(1/((e/cos(c + d*x))^(1/2)*(a + a*tan(c + d*x)*1i)^2), x)